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Supplementary Figure 1. Hypothesized Plasmodium falciparum targets. a, Gene 
expression profiles of hypothesized P. falciparum targets in Table 1.  Heat maps were 
generated for the mRNA expression of hypothesized target genes listed in Table 1 
during 48 hr intra-erythrocyte infection16 (left) and over various life stages15 
(right),using data from published studies and PlasmoDB32    Non-intra-erythrocyte life 
stages have red labels. White or empty cells indicate missing data.  No gene expression 
data were available for two putative targets, MAL1P3.03a (18S rRNA) and PlfaoMp3 
(mitochondrial cytochrome b).  b, Phylogenetic tree of combined human and P. 
falciparum kinomes.  P. falciparum kinases and branches are red while human 
counterparts are black.  Major human kinase subfamilies labelled are tyrosine kinases 
(TK): tyrosine-like kinases (TKL); homologs of yeast sterile 7, 11 and 20 kinases 
(STE); casein kinase 1 (CK1); PKA, PKG, PKC kinases (AGC); calcium/calmodulin 
kinases (CAMK); and CDK, MAPK, GSK3, CLK kinases (CMGC).  Malarial kinases 
that are hypothesized targets in Table 1 are marked with a red dot.  Neighbor-joining 
tree based on pairwise amino acid sequence similarity for all known human19 and P. 
falciparum21,32 kinase domains.  Nodes supported by ≥ 60% of  1000 bootstrap 
replicates are indicated by “*” (see Methods for tree reconstruction).

PARK2



Outline

2

1. Targeting human host factors for infectious and neural 
degenerative diseases

2. The lung microbiome in respiratory diseases

3. Multi-omics data analysis of human protein-metabolite 
interactions



Host-microbe Interactions: The Immune System Balancing Act

3

1918 Flu Pandemic

§ Microbiome and pathogens interact with the host in different ways.
§ Complex immune pathways have evolved to orchestrate an effective defense against a wide range of 

pathogens while still promoting colonization of beneficial microbes for dietary energy and immune 
homeostasis. 

Microbial conversion of food stuffs
& GI tract immune homeostasis

Immune response



Host – Microbe Interactions in Health and Disease
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Health

Disease

Human Host
Genetics

Gene expression
Epigenetics
Proteomics

Microbes
Metabolites

EC-molecules
IC-invasion

Toxins

Immuno-response / host-
microbe crosstalk

Pro-In
fla

mmati
on Pathobionts

Pathogens
Dysbiosis

Anti-Inflammation

Sym
bionts

Path
oge

n-fr
ee

Symbiosis

“Imbalanced Interactions”

“Balanced Interactions”

§Life-style
§Medicines
§Diet

Systems biology and multi-
omics datasets have an 

important role in adding to 
our understanding of host-

microbe interactions.



The Rationale for Host Defense Targets

5

§ Human targets less likely to have evolve resistance 
compared to highly mutable pathogen-specific 
targets.

§ Potential to mitigate collateral tissue damage caused 
by overactive immune response to infection.

§ Potential for broad applicability across multiple, 
genetically diverse pathogens.

§ Broader range of human drug targets and chemical 
matter in pharma inventories.

§ Compounds modulating human targets are active at 
lower doses (therefore less toxic) than direct-acting 
anti-pathogen drugs.
 

§ Minimize collateral damage to the microbiome.

Viral/bacterial 
infection &
replication

Overactive
 immune response Tissue injury

Opportunities for intervention

Severe respiratory infections
(viral & bacterial)



Host Response to Respiratory Viral Infections

6Smith et al. 2012 PLoS One. e33174

§ Analysis of human gene expression studies across seven common respiratory tract viruses
§ Respiratory synovial virus (RSV); Metapneumonia virus; Influenza A virus; 

Coronavirus (SARS); Rhinovirus; Coxsackievirus; Cytomegalovirus
§ Public RNA-array datasets with matched infected and un-infected human cell-types
§ Extensive QC criteria
§ Performed pathway enrichment and druggable target analyses

§ 67 pathways in common among all seven viruses 

§ Multiple novel anti-viral and tissue damage targets (from Drug Bank and literature)
§ IL1B – Antagonists such as Canakinumab
§ TNF – Antagonists such as Pranlukast
§ CASP1 – Antagonists to reduce inflammatory damage 
§ MMP9 – Antagonists to modulate NLRP3 inflammasome

Steve Smith (M.Sc. Student; 
Data Scientist, Labcorp)
Will Dampier
Aydin Tozeren



Novel Pathways for Infectious Diseases
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PARK2

Smith et al. 2012 PLoS One. e33174

§ PARK2 (now called PRKN) encodes parkin RBR 
E3 ubiquitin protein ligase, a component of 
the Parkin-Ubiquitin Proteasomal System 
(Parkin-UPS) pathway.

§ Mutations in PARK2 are known to cause 
Parkinson disease and autosomal recessive 
juvenile Parkinson disease. 

§ Pathway enriched across 5 of 7 viruses based 
on human mRNA microarray analysis.

§ In humans, PARK2 gene variants are also 
associated with susceptibility to leprosy, 
typhoid and paratyphoid fever (Ali et al 2006 Clin. Exp. 
Immunol. 144:425).



Tuberculosis (TB) Infection Interactions with Host Immunity

8

§ Globally TB is one of the most prevalent 
infectious diseases (WHO).

§ 1.8 billion people infected
§ In 2022, 10.6 million fell ill and 1.6 million died
§ High unmet medical need

§ The bacterium Mycobacterium tuberculosis 
(MTB) is the causative agent of TB.

§ Intra-cellular pathogen of lung macrophages.

§ Latent MTB can be a long term infection 
requiring several months of treatment with 
multiple antibiotics:

§ Increase in multidrug-resistant (MDR) TB strains
§ Urgent need for new therapies 

§ Similar to viruses, MTB proliferation depends 
upon:

§ Evasion and/or subversion of host immune responses
§ Manipulation of the macrophage microenvironment



Meta-analysis of Human Gene Response to M. tuberculosis

9

§ Human transcriptome meta-analysis of 7 published 
human transcriptome during active pulmonary TB 
infection (PTB) datasets
§ Health control groups
§ No co-occurring infections
§ Pass QC and sample size criteria

§ Complete re-analysis of RNA-seq datasets for 
differentially expressed genes (DEGs)

§ Meta-analysis of individual studies then looking at 
overlapping gene sets

§ Pathway enrichment

§ Targets reviewed for genetic (GWAS) associations

§ Drug repurposing analysis

pathway components. Notably, there was significant en-
richment for several pathways more commonly associated
with non-infectious diseases. These include the leucine-
rich repeat kinase 2 (LRRK2) pathway in Parkinson’s dis-
ease (FDR-adjusted P = 9.4e-5, Fig. 3) and PD-1/PD-L1
(Programmed Death 1/PD-Ligand 1) signaling pathway
(FDR-adjusted P = 6.5e-5, Fig. 4). A few pathways were as-
sociated with other diseases such as asthma, chronic ob-
structive pulmonary disease and dermatitis, albeit all with
sparsely connected genes.
To explore the interactive relationships between the

1655 DEGs, we performed a protein-protein interaction
network analysis based on the STRING interactome
database using NetworkAnalyst [16, 26]. We obtained a
subnetwork containing 1727 edges and 740 nodes, 364
of which were DEGs (Fig. 5a). Among the DEGs, 42
genes directly interacted with each other, with LCK and
STAT3 having the highest degree of connectivity (Fig. 5b).
Among the functional partners of the DEGs, the Ubiqui-
tin C (UBC) gene was most highly connected in the net-
work by interacting with 112 other genes, 110 of which
were DEGs (Fig. 5a).

Validation of the meta-analysis
To evaluate the reproducibility of our results, we validated
the 407 DEGs with log2 fold changes greater than 1.5 in
four additional microarray datasets (GSE42834,
GSE56153, GSE31348 and GSE36238). The 407 genes
yielded a clear separation of PTB and control for all four
datasets in PCA (Additional file 7a). Using PLS-DA, the
407 genes showed good sensitivity (above 83%) and speci-
ficity (above 82%) in all four independent datasets, and
had a significantly greater AUC than a random set of 407
genes in all datasets except GSE36238, which had a small
sample size (Additional file 7b). Accordingly, R2 and Q2

measures of model quality and predictability, respectively,
were markedly greater for the 407 gene set than the ran-
dom gene set in all four datasets (Additional file 7c).
We also performed a separate meta-analysis on the in

vitro datasets available for Mtb infection. In total, 2535
and 2911 DEGs were identified for dendritic and THP-1
cells datasets respectively, from which 129 and 192 path-
ways were significantly enriched (FDR-adjusted P < 0.01,
Additional file 8). Of them, 335 genes (13.2%) in den-
dritic datasets and 414 (14.2%) genes in THP-1 datasets

Dataset collection
- ‘Tuberculosis’, ‘Homo sapiens’, 

‘Expression profiling by array’ from GEO
(n=85) Excluded (n=73)

- less than 3 samples per group (n=6)
- HIV subjects complicated (n=4)

- no human data (n=5)
- no patients data (n=4)

- no healthy control data (n=11)
- Quality control failed (n=7)

- other factors (n=36)Dataset selection
- in vivo datasets (9 PTB and 5 LTB) (n=9)
- in vitro datasets of dendritic cells (n=3)

Data processing
- Quality control (Kernel density, 

MAD, Correlation, PCA)
- Log transformation and auto-scaling

Statistical meta-analysis
- Batch effect removal (ComBat)

- Differential expression analysis (limma)
- Meta-analysis (FDR P<0.01, INMEX)

Pathway enrichment analysis
- Pathway analysis (MetaCore, FDR P<0.01)

- PPI network analytsis (NetworkAnalyst)

Genetic analysis (GWAS)
- GRASP and FANTOM5 

(Genome-wide significant P<5e-8)

Drug repurposing analysis
- DrugBank analysis

- Connectivity Map analysis (Enrichment 
score<0, P<0.05, Specificity<0.1)

61 SNPs associated 
with 48 DEGs

- 14 DrugBank compounds
- 13 CMAP compounds

- 1,655 DEGs
- 407 DEGs with |fold 

change|>1.5

Validation analysis
- Independent datasets (n=4)

- PLS-DA with 7-fold cross validation

- 90 pathways
- 1,727 edges, 740 nodes

Fig. 1 Flowchart of the statistical meta-analysis of human gene expression in response to Mtb infection. The process consists of eight major steps
which were detailed in the grey boxes. The output of each data analysis step was indicated in the corresponding pink box. Detailed criteria for
each major step were described in Methods

Wang et al. BMC Systems Biology  (2018) 12:3 Page 5 of 18

Wang et al. 2018. BMC Syst Biol. 12:3

Dr. Zhang Wang,
Early Talent PDF;
CB Scientist GSK;

Professor Southern 
China Normal U.

Dr. Seda Arat
Co-op Graduate Student;

Comp. Toxicologist, Pfizer 



10

§ Parkin-Ubiquitin Proteasomal System, 
involved in the progression of 
Parkinson disease

Apoptosis and survival
Blood coagulation
Cell adhesion
Development
Immune response
Other
Proteolysis
Signal transduction
Transcription

Wang et al. 2018. BMC Syst Biol. 12:3

Enriched Human Pathways in PTB Infections

§ 54 pathways found enriched for 4 or 
more out of 7 datasets



LRRK2 in Parkinson’s Disease (PD) and Tuberculosis

11

§ Several Parkinson’s Disease core pathways are 
modulated in TB.

§ 1.38-fold risk of Parkinson’s Disease in TB patients 
independent of other clinical factors (Shen et al. 2016. Medicine [Baltimore] 
95:e2883).

§ 58 genetic variants associated with PD proximal 
to 407 Differential Expressed Genes (DEGs) in TB.

§ LRRK2 (leucine rich repeat kinase 2) mutations 
associated with PD; considered a potential target.

§ LRRK2 has wide immune regulatory functions and 
associates with the mitochondria

§ LRRK2 highly expressed in the lung and linked to gut-
brain immunity (Peter & Strober. 2023. J. Parkinsons Dis.) 

§ GSK/Crick collaboration support LRRK2 as a 
potential TB target

§ LRRK2 deficiency in mice resulted in a significant 
decrease in M. tuberculosis burdens early during the 
infection (Hartlova et al. 2018. EMBO J. 37). 

Wang et al. 2018. BMC Syst Biol. 12:3

LRRK2



Inhibitory PD-1 Signaling in T-cells

12Wang et al. 2018. BMC Syst Biol. 12:3

§ Pathway significantly enriched in 4 PTB datasets. PD-
L1 gene significantly up-regulated in 5 PTB datasets.

§ The PD-1/PD-L1 pathway has been shown to inhibit 
T cell effector function during PTB infections (Yin et al. 

2014. Tuberculosis 94:131), suggesting Mtb might exploit PD-
1/PD-L1 pathway to evade host immune response.

§ Overcoming T-cell exhaustion is the basis of cancer 
immuno-therapy and might be a strategy for TB.
§ Potential to test PD-1 check point inhibitors clinically 

used for immuno-oncology (i.e., Pembrolizumab 
[Keytruda]) for activity against active PTB. 



Potential Drug Repurposing For TB Therapy

13Wang et al. 2018. BMC Syst Biol. 12:3

§ Drug repurposing hypotheses – two methods.

§ 407 DEGs searched for associations with known drugs 
listed in the Drug Bank database 
https://go.drugbank.com/ .

§ 19 drug-target links identified involving 14 drugs 
and 16 differentially expressed genes (DEGs).

§ Connectivity MAP (L1000 CMAP https://clue.io/ ) 
analysis utilizes the anti-correlation relationships 
between gene expression (RNA-seq) signatures in 
diseases and drug perturbations.
 
§ 13 drugs with significantly anti-correlated signatures 

to the PTB signature

employed to obtain protein-protein interaction modules
important in TB and generate novel targets (i.e. UBC)
that may play a role in regulating the expression of mul-
tiple TB-related host factors. Fifth, with respect to drug
repurposing analysis, CMAP analysis was performed to
generate additional hypotheses based on anti-correlation

relationships between gene expression signatures in dis-
eases and drug perturbations (Table 5).

Conclusions
In summary, our meta-analysis provides new insights
into host genes and pathways important for TB infection

Table 5 List of significant public compounds in CMAP analysis
Compound P-value Specificity Therapy area Pharmacological action Indication Target

Disopyramide 0 0.0006 Cardiovascular Sodium channel blocker Arrhythmia SCN5A, ORM1

Biperiden 0.0005 0.0984 Neurological Muscarinic acetylcholine receptor
antagonist

Parkinsonism CHRNA2, CHRM1

Remoxipride 0.0036 0.0164 Neurological Dopamine receptor D2 antagonist Schizophrenia DRD2

Suramin sodium 0.0101 0.0129 Anti-infective Topoisomerase inhibitor African trypanosomiasis P2RY2, SIRT5, FSHR

Flunarizine 0.0133 0.0119 Cardiovascular Voltage-gated calcium channel
blocker; sodium channel antagonist

Migraine, epilepsy HRH1, CACNA1G, CACNA1H,
CACNA1I, CALM1

Adenosine
phosphate

0.019 0.0007 Cardiovascular Calcium channel blocker Arrhythmia Unknown

Ranitidine 0.0332 0.049 Miscellaneous Histamine receptor H2 antagonist Peptic Ulcer HRH2

Chloropyramine 0.0355 0.0523 Miscellaneous Histamine H1 receptor antagonist Antiallergic agent HRH1

Acetohexamide 0.0408 0.0508 Cardiovascular Blocking of ATP-sensitive K+ channel Diabetes mellitus type 2 KCNJ1

Dobutamine 0.0411 0.0665 Cardiovascular Adrenoreceptor agonist (beta1) Cardiac decompensation ADRB1

Mephenytoin 0.0441 0.0444 Cardiovascular Sodium channel inhibitor Seizures SCN5A, ALB

Testosterone 0.0476 0.0783 Miscellaneous Androgen receptor agonist Hypogonadism AR, ALB, SHBG, NPPB

Dienestrol 0.0483 0.0982 Miscellaneous Estrogen Atrophic vaginitis ESR1

Table 6 List of TB host targets or compounds proposed in this study
Examples of current therapies under investigation Targets and compounds proposed in this study

Compounds Targets/
Pathways

Evidence [45] Compounds Targets/
Pathways

Evidence

Aspirin Arachidonic
acid metabolism

Upregulation of lipoxin X4
production to reduce TNF-α
levels and achieve eicosanoid
balance during chronic
inflammation.

LRRK2 inhibitor LRRK2
pathway

LRRK2 pathway significantly upregulated
in TB. LRRK2 genetically associated with
susceptibility of M. leprae infection.
Cormobidities between TB and
Parkinson’s disease.

Anti-CTLA4/PD-
1/TIM3/LAG3

Modulation of
aberrant T-cell
activity

Blockade of immune checkpoint
pathways to restore T- and B-cell
activity.

PD-L1 inhibitor
(Atezolizumab)

PD-1/PD-L1
pathway

PD-1/PD-L1 significantly upregulated
in TB, and inhibit TB-specific T-cell and
macrophage functions.

Valproic acid Histone
acetylation

Removal of acetyl groups of lysine
residues on histones to allow DNA
unwinding and gene transcription.

Carfizomib PSMB8,
PSMB9,
PSMB10,
PSMB2

PSMB8, PSMB9 significantly upregulated
in TB, with strong genetic association
with TB infection.

Statins Disruption of
cholesterol
homeostasis

Abrogates production of
endogenous cholesterol.

Intraveneous
Immunoglobulin (IVIg)

FCGR2A,
FCGR3A, C5

FCGR2A, FCGR3A, C5 significantly
upregulated in TB. Efficacy of IVIg in
reducing bacterial load in TB infection.

Verapamil/
Carbamazepine

Modulation of
ion efflux
channels

Modulation of activity of voltage-
gated channels to maintain cellular
ionic balance and homeostasis.

Disopyramide SCN5A,
ORM1

Top compound in CMAP analysis.
SCN5A regulates spatial and temporal
calcium signaling during Mtb
phagocytosis.

Metformin Mitochondrial
respiration

Interrupts the mitochondrial
respiratory chain and induces
ROS production.

Flunarizine HRH1,
CACNA1G,
CACNA1H,
CACNA1I,
CALM1

Top compound in CMAP analysis.
Potential efficacy in restricting Mtb
growth.

List of TB host targets and compounds proposed in this study as well as examples of current repurposed drugs under investigation for TB host-directed therapies
(full list refer to [45])

Wang et al. BMC Systems Biology  (2018) 12:3 Page 15 of 18

https://go.drugbank.com/
https://clue.io/


§ Increasing evidence on the role of neuro-inflammation in 
neurodegenerative diseases (Lim et al. 2015 Microbes and Infection 
17:549)

§ Potentially peripheral factors could trigger CNS 
inflammation (Itagaki et al. 1989. J Neuroimmunol 1989;24:173e82; Cribbs et 
al. 2012. J Neuroinflammation 9:179)

§ Infectious pathogens are often detected in the brains of 
Alzheimer’s Disease (AD) patients (Miklossy et al. Expert Rev Mol 
Med 2011;13:e30; Xinhua et al. Neurology online October 26, 2016)

§ Herpes simplex virus type 1 (HSV1) and other 
Herpesviridae family members including cytomegalovirus 
(CMV), Epstein-Barr virus (EBV), or human herpes virus 6 
(HHV-6), can infect neurons and been associated with AD 
(Zhou L, Miranda-Saksena M, Saksena NK.. Virology Journal. 2013;10:172.; Carbone et 
al. 2014 Neurobiol Aging. 35:122-9)

14

Hypothesis: Comparisons of gene expression profiles in AD/PD 
patients to those of patients infected with CMV, EBV or HHV-6 
pathogens might reveal specific neuro-inflammation pathways

Lim et al. 2015 Microbes and Infection 17:549

Parkinson Disease (PD) and Alzheimer’s Disease (AD): 
Associations with Neuro-Inflammation and Viral Infections

PD

AD

Caggiu et al. Inflammation, Hsv-1, and PD

immunity through an overview of microglial activity, and finally
describing roles of the adaptive cell-mediated immunity in the
disease. In addition, the hypothesis of PD as an autoimmune
dysfunction is also discussed.

INFLAMMATION IN PD

Already in 1988 McGeer’s research team suggested that
inflammation could be the first pathogenic mechanism of PD
(7). At the same time, it has been observed that the use
of non-steroidal anti-inflammatory drugs (NSAID) decreases
the risk of PD, and this could be considered as a proof
of inflammogenic characteristics of the disease (8). While
neuronal death has been described as evidence of the ongoing
CNS inflammation (9), several scientific reports documented
microglial activation, cytokine production and the presence
of autoantibodies univocally indicating inflammatory processes
in PD (10–13). In vitro assays employing a dopaminergic
neuron model showed some membrane proteins to be targeted
by antibodies present in CFS of affected patients (14). A
research performed on post-mortem excised brains revealed
higher concentrations of cytokines and proapototic proteins
in the striatum and cerebrospinal fluid (CSF) of PD patients
compared to levels found in healthy controls, pointing at
inflammation as a constant element of the disease (15). Through
a further immunohistological study, McGeer et al. discovered
several alterations in striatal microglial cells of patients with
PD that appeared to be activated by an increased synthesis
of proinflammatory cytokines (16). Nonetheless, it remains to
be explained whether inflammation represents the first cause
determining neurodegeneration or if it results from a selective
damage process and cell degeneration.

Anthropogenic pollutants account for a significant part of
neurotoxic agents. It’s enough to think about 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) as the most striking example
followed by certain pesticides released to the environment.
MPTP, which may be accidentally produced during the
manufacture of the analgesic opioid drug desmethylprodine
(MPPP), causes irreversible neuronal damage and parkinsonian
syndromes. Autopsies executed on subjects previously exposed
to MPTP showed the activation of microglia persisting for even
16 years (17). These results provided a further evidence that
an initial neuronal damage may lead to a neuroinflammatory
process and have been confirmed by studies conducted on animal
models, several of which demonstrated the ability of MPTP
(18), rotenone insecticide (19, 20), and 6-hydroxydopamine (6-
OHDA) (21) to activate microglial cells. In the same way, death
of dopaminergic neurons has been observed both in vitro and
in vivo after stimulation of microglia with lipopolysaccharides
(LPS) (22–27).

ALPHA-SYNUCLEIN AND
NEUROINFLAMMATION IN PD

A-syn is a soluble protein highly conserved among vertebrates,
with α-helical lipid-binding motif common to all synucleins.

FIGURE 1 | Autoimmune dysfunction in the etiology of Parkinson’s disease

(PD). The etiology of PD is multifactorial. It has been hypothesized that

inflammation may underly the neurodegenerative process, with the immune

system playing a key role. Viral infections are plausible triggers able to

stimulate the immune system in genetically susceptible individuals inducing

reactions that lead to autoimmune responses.

Even though the physiological role of α-syn is not well
understood, it is known to carry out crucial functions in
synaptic plasticity (28) and in the release of neurotransmitters
and synaptic vesicles (29, 30), thereby in regulating synaptic
transmission through the stabilization of the SNARE protein
complex, whose assembly and disassembly is essential for
a correct membrane fusion on neuron terminals (30, 31).
Consequently, α-syn is a key protein in the pathogenesis of PD.
Although the scientific literature provides countless studies often
yielding promising results, the reasons behind the accumulation
of α-syn along with its causal role in neurodegeneration are still
unresolved. However, it is ascertained that a higher expression
of wild-type protein leads to formation of α-syn inclusions in
neurons followed by cellular damage (32, 33).

According to post-mortem histological examinations of
PD patients, alteration and aggregation of α-syn have been
suggested to occur as an epiphenomenon probably mediated
by other conditions, such as neuroinflammation (34). It has
also been hypothesized that secreted extracellular α-syn can
immediately activate glial cells and subsequently induce neuronal
inflammation. Glial cells are able to capture and degrade α-
syn masses in an effective way similar to neurons (35). The
activation of microglia could encourage the production of
some protective molecules including brain-derived neurotrophic
factor (BDNF) but also proinflammatory cytokines, reactive
oxygen and nitrogen species (36) which favor the progression
of this neurodegenerative disease. In a study on murine
models, Harms et al. observed the recruitment of peripheral
innate immune cells such as monocytes and macrophage
induced by injection of α-syn fibrils into the SNpc (37).

Frontiers in Neurology | www.frontiersin.org 2 February 2019 | Volume 10 | Article 122

Autoimmune 
dysfunction in the 
etiology of Parkinson’s 
disease (PD). 

Caggiu et al. 2019. Frontiers in Neurology. 
doi: 10.3389/fneur.2019.00122
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Alzheimer’s 
Disease

Parkinson’s 
Disease

Bacterial 
pathogens
•Pseudomonas 
aeruginosa

•Streptococcus 
pneumoniae

Viruses
•Influenza A
•Respiratory 
Syncytial

•Rhino
•SARS-corona
•Metapneumo.
•Coxsackie
•Cytomegalovirus
•Epstein Bar virus
•Herpes virus 6

Tuberculosis
•Mycobacterium 
tuberculosis

Healthy vs. Diseased
Gene Expression Signatures

Human Host Response to Infections
Gene Expression Signatures

Dr. Carol Sa, Early Talent PDF
Sr. Data Scientist J&J

Find Common Genes 
& Pathways

Target Selection 
GWAS

Proteomics
Literature

Tractability 

§ Systems biology analysis to find common AD/PD and viral host response targets
§ Published GEO datasets involving patients and human blood samples used in all comparisons

Sa et al. 2019. Scientific Reports (Nature) 9:8795

Identifying Neuro-inflammation Targets

GSE63036 GSE99039
GSE81246
GSE20200
GSE45829
GSE40396

2x
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Differentially Expressed Genes Significantly Enriched Pathways

AD-HHV6 AD-EBV

AD-CMV

Role of Sirtuin 1 and PGC1-alpha (PPARG 
coactivator 1 alpha) in activation of 
antioxidant defense system

Sa et al. 2019. Scientific Reports (Nature) 9:8795

CMV, EBV and HHV6 Shared Gene Signatures with AD



• “Role of Sirtuin 1 and PGC1-alpha (PPARG coactivator 1 
alpha) in activation of antioxidant defense system” was the 
top pathway significant for all 3 viruses and AD.

• SESN3 (sestrin 3) and TXN (thioredoxin), which play 
important roles in this pathway, ranked among the top 
genes associated with CMV/EBV, and CMV/HHV-6 host 
responses, respectively.

• TXN has been suggested to be an early biomarker of AD 
(Arodin et al. 2014. Alzheimer’s Dis. 39:787).  

• SNP rs3911569 near SESN3 associated with 5-fold increased 
risk for AD (Herold et al. 2016 Mol Psychiatry 21:1608-12).

• Findings support the “mitochondrial cascade hypothesis” 
which postulates the co-occurrence of AD-related 
mitochondrial dysfunction (Wang et al. 2013 Cell Metab 17:685-94).

17

Oxidative Stress in Alzheimer’s Disease

Sa et al. 2019. Scientific Reports (Nature) 9:8795
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Differentially Expressed Genes Significantly Enriched Pathways

LRRK2 Pathway

PD-HHV6 PD-EBV

PD-CMV

CMV, EBV and HHV6 Shared Gene Signatures with PD

Sa et al. 2019. Scientific Reports (Nature) 9:8795

Reverse signaling by Ephrin-B
(involved in neural regeneration)



§ Microglia cells function as macrophages in the 
central nervous system and fulfill the role of 
immunity surveillance in the brain
 

§ Using public datasets, we confirmed that the 
majority of significant genes are also actively 
expressed in human microglia (log2 transcripts per 
million reads > 2)
§ 86.3% in AD
§ 93.6% in PD

§ Supports sampling of the blood as a surrogate for 
direct microglia gene expression profiling

19

Alzheimer’s 
Disease

Parkinson’s 
Disease

Gene Expression Levels in Brain Microglia Cells

Sa et al. 2019. Scientific Reports (Nature) 9:8795



• Three strategies for prioritizing potential targets for 
further in vitro / in vivo validation studies:

1. Genetic evidence for target being associated with the 
primary disease indication using human genetic data 
(i.e. UKBB, 23andMe, FinnGen, GWAS catalogue).

2. Availability of potential tool compounds or 
antibodies for reversing disease gene expression 
signatures using CMAP (L1000).

1. GSK has internal CMAP data on lead compounds 
in multiple cell-types.

3. Availability of potential tool compounds or 
antibodies for modulating specific targets using GSK 
compound database and public DrugBank.

Lamb et al. Science, 2006

20

Translating Targets into Therapeutic Opportunities

Sa et al. 2019. Scientific Reports (Nature) 9:8795



• 19 viral associated DEGs had proximal SNPs 
associated with neurodegenerative diseases in 
the GWAS catalog.

• CMV CMAP: 16 drugs identified with a 
significantly anti-correlated signature to the 
CMV signature (P < 0.05, Specificity < 0.1).
• 8 compounds (highlighted) with literature 

evidence of neuro protection to AD or PD.

• EBV CMAP revealed 24 compounds; 4 
compounds had neurological indications 
including PD.

• HHV-6 CMAP had 16 compounds; 3 
compounds with neuro-indications.

• In-house CMAP found more than 30 GSK 
compounds with unique targets. 21

Compound Mechanism of Action Indication
Compound 
Score

Enrichment 
Score P-Value

quinostatin PI3-Kinase/mTOR inhibitors Oncology 1 -0.87 0.0337

cortisone Corticosteroid Hormone Receptor 
Agonists

Anti-inflammatory
0.5 -0.88 0.0285

quinethazone Sodium/chloride tranporter inhibitor Antihypertensive 0.5 -0.84 0.0492
metrifonate Cholinesterase inhibitor Neuro protection1,2 0.37 -0.95 0.0054
cicloheximide Protein synthesis inhibitor Antibiotics 0.33 -0.99 0.0002
anisomycin MAP kinase activator Neuro protection3 0.33 -0.97 0.0023
molindone Dopamine receptor antagonist Neuro protection4 0.33 -0.94 0.0059
hydroflumethiazide Na-Cl cotransporter inhibitor Antihypertensive 0.33 -0.94 0.0077
pronetalol Adrenoreceptor blocker (beta) Neuro protection4 0.33 -0.93 0.0089
picotamide Eicosenoid receptor antagonist Anti-inflammatory 0.33 -0.93 0.0103
mephenytoin Sodium channel blocker Antihypertensive 0.33 -0.89 0.0231
dipivefrine adrenergic agonist Neuro protection4 0.33 -0.87 0.0343
etamsylate Prostaglandin synthesis inhibitor Anti-inflammatory 0.33 -0.85 0.0422
mebeverine Phosphodiesterase inhibitor Neuro protection5 0.33 -0.85 0.045

prasterone Estrogen receptor (ER) agonists 
Androgen receptor (AR) agonists

Neuro protection6
0.33 -0.85 0.0467

pirenzepine Muscarinic M1 receptor antagonist Neuro protection4 0.3 -0.95 0.0045

Genetic Evidence and Drug Repositioning

Sa et al. 2019. Scientific Reports (Nature) 9:8795



Outline

22

1. Targeting human host factors for infectious and neural 
degenerative diseases

2. The lung microbiome in respiratory diseases

3. Multi-omics data analysis of human protein-metabolite 
interactions



COPD and the Lung Microbiome

23

§ Chronic obstructive pulmonary disease (COPD): lung disease characterized by 
chronic obstruction of lung airflow that interferes with normal breathing and not
fully reversible (WHO). 

§ Globally, about 300M people with COPD and is the 5th leading cause of death in 
2022, projected to be 4th by 2030 (Mathers et al. 2006. PLOS Med. 3:e442; Lozano et al. 2012. Lancet 
380:2095)

§ COPD exacerbations are heterogenous and not all the same.

§ 78% of COPD exacerbations associated with viral/bacterial infections (Papi et al. 2006 
Am J Respir Crit Care Med)
 

§ Need for precision medicine strategies for COPD.

Exacerbation
frequency

Viral
Bacterial
Viral-Bacterial
others Viral 

Infections
Bacterial 
Infections

Immune 
Response

Microbiome? 

The healthy lung is not sterile!



GSK Sponsored COPD-Microbiome Studies

24

1) COPD-BEAT (Wang et al. 2016. European Resp. J. 47:1082)

     n = 87 COPD subjects; sample no. = 476 sputum
     single site study : University of Leicester
     samples: stable, exacerbation, treatment, recovery

2) COPD-MAP (Wang et al. 2017. Thorax. 73:331)

     n = 285 COPD subjects; sample no. = 716 sputum
     3x sites: Imperial, Leicester, Manchester
     samples: stable + exacerbation

3) AERIS (GSK Rx & Vx) (Mayhew et al. 2018. Thorax. 73:422)

     n = 101 COPD subjects; sample no. = 584 
     single site study: University of Southampton
     samples: monthly visits (stable) + exacerbation
  



Four Potential Exacerbation Driver Phenotypes 

25

§ Bacterial (B): positive bacterial pathogen (HI, MC, SP, 
SA, PA) on routine culture, or total aerobic CFU >= 107 
cells (micro_culture1)

§ Viral (V): positive sputum viral PCR

§ Eosinophil (E): eosinophil percent >= 3% nonsquamous 
cells

§ Pauciinflammatory (Pauci): others, limited changes in 
the inflammatory profile

§ What changes occur clinically in the lung microbiome 
across COPD exacerbation phenotypes and treatment 
regimens?

Bafadhel et al. 2011 Am J Respir Crit Care Med 184: 662



GSK/U. Leicester COPD Microbiome BEAT Study

26

§ Clinical, viral, bacterial and sputum cell-type 
data previously published this patient 
cohort (2008 –10). (Bafadhel et al. 2011. Am J Respir Crit 
Care Med 184: 662)

§ Lung sputum samples collected at stable, 
exacerbation, post-therapy and recovery 
time-points:
§ 87 patients
§ 139 visit series
§ 476 sputum samples

§ 16S rRNA amplicon sequencing carried out.

Stable

Exacerbation

Post-Therapy

Recovery

Antibiotics/Steroid/Both

52.1 ± 40.3 days

14.6 ± 3.6 days29.8 ± 4.5 days

250 ± 228.4 days

Dr. Zhang Wang, Prof. South China Normal University
Former GSK CB analyst & Early Talent PDF

Wang et al. 2016. European Resp. J. 47:1082



Microbiome Dynamics During Exacerbation Events

27

a. Overall reduced alpha 
diversity during 
exacerbations

b. Increased ratio of 
Proteobacteria : 
Firmicutes driven by 
increased Moraxella sp 
and decreased 
Streptococcus sp. 

c. Subset of 36 out of 87 
patients show an increase 
in Moraxella sp. 

Wang et al. 2016. European Resp. J. 47:1082



Bacterial vs Eosinophilic Driven Exacerbation Events 

28Wang et al. 2016. European Resp. J. 47:1082

* ANOVA FDR Corrected P < 0.05

*
*

§ Beta diversity plot of bacteria (red squares) and 
eosinophil (blue circles) exacerbations
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Standard of Care Alters the Microbiome

29Wang et al. 2016. European Resp. J. 47:1082

§ Steroids and antibiotics 
have opposite effects on 
microbiome diversity and 
composition.

§ Steroids decreased 
diversity and increased 
proteobacteria genera (i.e., 
Moraxella & Haemophilus).

§ Antibiotics increased 
overall diversity by 
decreasing Proteobacteria.



Microbiota Interactions: Self and The Human Host 

30Wang et al. 2016. European Resp. J. 47:1082

§ Bacterial co-existence / co-exclusion suggest 
Haemophilus sp. and Moraxella sp. as potential 
keystone species.

§ Sputum IL-8, a pro-inflammatory cytokine, had the 
highest degree of connectivity being negatively 
correlated with 15 bacterial OTUs.



AERIS: Monthly Stable + Exacerbation Time Series

31

§ Within subjects, Moraxella relatively increased from 
stable to exacerbation states. 

Mayhew et al. 2018. Thorax. 73:422

§ Severe exacerbations associated with an increase 
in Proteobacteria, decrease in Bacteroidetes and 
Firmicutes and decreased Shannon diversity.



AERIS: Probability of Phenotype Transitions

32

§ Markov model shows significantly non-random 
transition probabilities for bacterial and 
eosinophilic phenotypes but not viral 
phenotype.

§ For bacterial and eosinophilic exacerbations, 
the phenotype of the next exacerbation for an 
individual is more likely to repeat the prior 
exacerbation phenotype than expected by 
chance.

§ Respiratory viral infections can often proceed 
worsening bacterial infections.

§ Opportunities for precision medicine 
strategies for COPD treatments based on 
bacterial vs eosinophilic phenotypes.    

Mayhew et al. 2018. Thorax. 73:422



Outline
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1. Targeting human host factors for infectious and neural 
degenerative diseases

2. The lung microbiome in respiratory diseases

3. Multi-omics data analysis of human protein-metabolite 
interactions



Metabolites: The Currency of Microbiome Crosstalk with
Human Signaling Pathways

34
34

Mucosal Immunol. 2018 Apr 25. doi: 10.1038/s41385-018-0022-7.(Natural Killer Cell Agonists)



The Apothecary Within: Targeting Human-Microbial Crosstalk

35

§ Microbiome metabolism of dietary fibers generates many 
diverse metabolites with positive immuno-modulatory 
effects.

§ Metabolites are advantageous starting points for drug 
discovery:

§ Known modulators of host immunity (i.e., Cohen et al. 2017. 

Nature 549:48). 
§ Well-tolerated as endogenous molecules.
§ Evolutionary optimized metabolite-receptor pairing for 

selectivity and specificity.
§ Many successfully launched drugs have “metabolite-

like” properties (Dobson et al. 2009 Drug Discovery Today 14:31).

§ Challenge: Low-throughput of current experimental 
approaches to identify potential metabolite ligand-receptor 
linkages.

§ Can we accelerate the discovery of useful metabolite-
protein ligand pairings via in silico hypothesis generation?

Saha et al. 2016. Drug Discovery Today 21:692 



Finding Human Target – Metabolite Ligand Pairings

36

§ Question: How do we find the human targets 
of endogenous metabolites? 

§ Answer: The experiment has already been 
done … at least, partially!

§ The hypothesis – In public and pharma 
compound-assay databases, there are likely 
many “metabolite-mimics” with specific 
annotated human target interaction data

§ “Fish” for drug targets in the “lake” of 
compound data using similarity to metabolite 
chemotypes as the “bait”!

Metabolite
Target 1Target 2

Target 3



Microbial Metabolite Structure Known Target (if any)

Propionate G-protein coupled receptors

Butyrate G-protein coupled receptors

Hexanoate G-protein coupled receptors

Benzoate Unknown

Niacin G-protein coupled receptors

Urolithin -A Cytochrome P450s family 1B1

Protocatechuic Acid (PCA) Unknown

Equol
cAMP-protein kinase A

Estrogen receptors

8-Prenylnaringenin
(8-PN) Unknown

Indole Voltage Gated K+ channels
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Output: 
1. Cpds highly similar to microbial 

metabolites.
2. Their 2D chemical structures. 
3. Putative protein ligands. 
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SMILE String 2D 

Conversion

Search GSK 4.5 M 
compound collection

Retrieve metabolite-mimics

> 0.8 Tanimoto 
score
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Retrieve associated human 
protein assay data

Metabolites Reported As Immuno-modulators

28
33

139

38
18

33

22

21

65

24
Propionate

Butyrate

Hexanoate

Benzoate

Niacin

Urolithin -A

PCA

Equol

8-PN

Indole

5 2

19

9

14

4

37

1 2 8 Cytochrome

Cytokine

GPCR

Ion Channel

Kinase
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Protease

Transporter

Dr. Somdutta Saha, Early 
Talent PDF
Bix Scientist, SpringWorks

421 “metabolite-mimics”

101 putative metabolite-receptor 
ligand relationships

Saha et al. 2016. Drug Discovery Today. 21:692



The Human Microbiome Project 2 (HMP2)
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§ Inflammatory bowel disease (IBD) patients:

§ CD: Crohn’s disease
§ UC: Ulcerative colitis

§ Multi-omics longitudinal assays:

§ Human host genetics (though underpowered for GWAS)
§ RNASeq from biopsies
§ Metagenome, metatranscriptome, metaproteome & stool 

metabolome
Controls 
(nonIBD)

Crohn’s 
disease (CD)

Ulcerative 
colitis (UC) Tot

Participants 26 49 30 105
Metagenomic 

samples 429 750 459 1638

Metabolomic 
samples 135 265 146 546

RNAseq samples 51 127 74 252

Dr. Andrea Nuzzo, 
Early Talent PDF;
CB Manager at GSK

Cell Host & Microbe, 2014, 16:3, 276-289, https://doi.org/10.1016/j.chom.2014.08.014 

Dr. Somdutta Saha,
Early Talent PDF
Bix Scientist, SpringWorks

https://doi.org/10.1016/j.chom.2014.08.014


Computational and In vitro Validation Workflow
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Metabolomics
(548 metabolites verified in HMDB, 

Human Metabolome Database)

Human biopsy transcriptomics
(43870 transcripts) 

Machine 
learning

(XGBoost)

Chemoinformatics
metabolite analogs

Tanimoto similarity ≥ 0.85
TverskyⱭ=0.05 similarity ≥ 0.95

Differential expression and 
pathway enrichment analysis

Functional 
assays 

databases

Genome-wide 
association studies

Metabolite-target 
pair evaluation

In vitro validation

Analog cpds
Cpd-target 

pair w/MOA

Relevant metabolites

Rele
va

nt
 ta

rg
et

s

* identified in the Human Metabolome Database [HMDB] Nuzzo…Brown. 2021. Commun. Biol. (Nature). 4:288
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Fig. 1 Metabolomics results and comparisons to the original HMP2 IBD study9 (HMP2). a UMAP analysis of the metabolomics sample distribution by
Crohn’s disease (CD) and Ulcerative Colitis (UC) patients and controls (nonIBD). b Volcano plot showing the differential abundance of each metabolite per
disease state against the consensus scoring of each state. c Number of metabolites considered relevant in HMP2 and current study per disease state,
subdivided into overlapping and non-overlapping subsets. d Total number of metabolites selected relevant in each study. e Intersection matrix between
metabolites selected each study. f Correlation plot between the bootstrapped power estimation method used to determine metabolite differential
abundance between CD and UC patients results. g Correlation between the consensus scoring used in this study and HMP2 FDR-adjusted p values for each
metabolite (refer to Table 1 for samples composition).
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We also built connections based on co-directionality between
metabolite depletion and corresponding downregulation of
perspective targets. For example, GPR119 was downregulated in
the UC cohort (log2fc=−1.39) and its known activator, linoleoyl
ethanolamide (pxC50= 5.66) was significantly depleted in UC
patients (Supplementary Data 1). Neuronal acetylcholine receptor
subunit beta-2 (CHRNB2) was downregulated in UC patients
(log2fc=−1.08) where L-acetylcarnitine and cotinine were
depleted, both analog to acetylcholine (Tverskyα=0.05 similarity
=0.95 and 0.99), a strong inhibitor of CHRNB2 (pxC50= 8.8).
Nitric oxide synthase 2 (NOS2), upregulated in IBD patients
(log2fc= 2.60[CD]; 3.49[UC]), was connected to the depletion of
negative modulators such as L-arginine (pxC50= 6.52, log10fc=
−0.31[CD]; −0.19[UC]).

Assigning candidate metabolites to targets with genetic evi-
dence. We retrieved 808 genes with genetic association to IBD
from the GWAS catalog13 and an extensive published review of
IBD pathways14. These genes were intersected with target-
compound assay and HMP2 datasets which resulted in 464
potential unique pairings of candidate genetic targets with
metabolite modulators (Supplementary Data 4), 13 of which have

metabolites with known modulation mechanisms (Fig. 4a–d;
Supplementary Data 5).

CXCR1 and CXCR2 were mapped to a regulatory variant
(rs11676348-T) statistically associated with an increase risk to
UC15 (Supplementary Fig. 5), and in our study were mapped to
an inhibitor, ibuprofen. An intronic variant statistically associated
to inflammatory skin disease (rs4795067)16 is mapped to NOS2,
which is also part of enriched nitric oxide and microbe-sensing
pathways, both involved in IBD phenotypes (Fig. 4a); we
connected NOS2 with the scarcity of arginine, an inhibitor.
Other metabolite–target pairings, although not differentially
expressed in the HMP2 dataset, had interesting genetic and
metabolomics associations. For instance, an intergenic variant
(rs79243092-C) mapped to gamma-aminobutyrate receptor
subunit 2 (GABRG2) is linked to an increase in macrophage
inflammatory protein 1b in Europeans17. In our study we linked
GABRG2 to several conjugated bile acids and corticosteroids
depleted in IBD, including oleanolic acid, through ganaxolone
(CHEMBL1568698) and allopregnanolone (CHEMBL207538),
two activator compounds (Fig. 4b). Finally, variant rs56330463-
C mapped to the serotonin receptor (HTR4) is associated with
increase in monocytes, an inflammatory phenotype18. Notably,
serotonin was depleted in UC an CD patients while its precursor,
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COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01822-x ARTICLE

COMMUNICATIONS BIOLOGY | ����������(2021)�4:288� | https://doi.org/10.1038/s42003-021-01822-x | www.nature.com/commsbio 5

−2

−1

0

1

2

−2 −1 0 1 2
UMAP 1

U
M

AP
 2

a

Taurine

Stearoylcarnitine

Tetradecanedioic acid 7−Methylguanine

Putrescine
N−Acetyl-
putrescine

Nicotinuric acid Oleoylcarnitine

CE(22:4(7Z,10Z,13Z,16Z))

Porphobilinogen
Taurine

Hexadecanedioic
     acid

Tetradecanedioic acid

7−Methyl-
guanine

Putrescine

Nicotinuric acid

Oleoylcarnitine

TG(16:0/16:1(9Z)/16:0)

CD UC

−1 0 1 −1 0 1
0.00

0.25

0.50

0.75

1.00

Differential abundance in disease compared to controls
C

on
se

ns
us

 s
co

re

b

357

138

13
40

384

51
79

34

0

100

200

300

400

In
te

rs
ec

tio
n 

si
ze

c

05010
0

15
0

Prioritized metabolites 
per study

d

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

in_HMP2

in_this_study

Intersection of metabolites by study

e

R = − 0.47 , p < 2.2e−16 R = − 0.47 , p < 2.2e−16
CD UC

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

FDR−adjusted p−value in original HMP2 study

C
on

se
ns

us
 s

co
re

f

R = 0.75 , p < 2.2e−16 R = 0.72 , p < 2.2e−16

CD UC

−5 0 5 10 15 −5 0 5 10 15

−1

0

1

2

Differential Abundance in original HMP2 study

Bo
ot

st
ra

pp
ed

 d
if f

er
en

tia
l a

b u
nd

an
ce

g

diagnosis
●

●

●

CD

nonIBD

UC

diagnosis
CD

UC

Fig. 1 Metabolomics results and comparisons to the original HMP2 IBD study9 (HMP2). a UMAP analysis of the metabolomics sample distribution by
Crohn’s disease (CD) and Ulcerative Colitis (UC) patients and controls (nonIBD). b Volcano plot showing the differential abundance of each metabolite per
disease state against the consensus scoring of each state. c Number of metabolites considered relevant in HMP2 and current study per disease state,
subdivided into overlapping and non-overlapping subsets. d Total number of metabolites selected relevant in each study. e Intersection matrix between
metabolites selected each study. f Correlation plot between the bootstrapped power estimation method used to determine metabolite differential
abundance between CD and UC patients results. g Correlation between the consensus scoring used in this study and HMP2 FDR-adjusted p values for each
metabolite (refer to Table 1 for samples composition).
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Metabolites Gene Expression

§ Differential abundance of metabolites and gene RNA-seq in CD and UC patients compared to non-IBD subjects
§ Prioritized known metabolites reported in the Human Metabolome Database.
§ Gene transcripts were aligned to Genome Reference Consortium Human Build 37 (GRCh37).

After ML analyses, top quartile (n = 192) to downstream analysis) Total DEGs n = 2107 of which 820 DEGs shared between CD & UC



Connecting Metabolites and Drug Targets

41

§ After filtering, 135 metabolites provisionally connected to 80 perspective proteins.

§ Distribution of connections between metabolite classes, modulation type and drug target classes (numbers represent 
unique targets per drug target class [ n = 61]). Some genes and metabolites have multiple interactions)

§ Filtered for metabolite-protein pairs with high binding affinity (i.e., either pIC50 or pEC50 values ≥5.5) 
§ Highly pleiotropic metabolites and targets (≥ 20 predicted interactions) were removed. 

Nuzzo…Brown. 2021. Commun. Biol. (Nature). 4:288

macro-categories with expected modulatory activity against 9
macro-categories of drug targets (Fig. 2b). For example, 7-
methylguanine, is structurally similar (Tverskyα=0.05 similarity =
0.96) to 8-aminoguanine (CHEMBL8040) which is an inhibitor
(pxC50= 5.8–6.2) of purine nucleoside phosphorylase (PNP).
Among the lipid-like metabolites, heptanoic acid was connected
through azelaic acid (CHEMBL1238, Tverskyα=0.05 similarity=
0.955) to the nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) and peroxisome proliferator-activated
receptors alpha (PPARA) with high inhibitory activity (pxC50=
6.0 and 8.6). Hydrocinnamic acid, depleted in both UC and CD
patients was connected to cytochrome P450 p1a2 (CYP1A2)
(Tanimoto similarity= 0.89) via a strong analog inhibitor (pxC50
= 8.3). Nicotinic acid (underrepresented in CD and UC patients)
was connected to its known receptor, the hydroxycarboxylic acid
receptor 2 (HCAR2 or GPR109a), whereas the product of its
degradation, nicotinuric acid, was overrepresented and connected
to Lamin A/C protein (LMNA) through a binder analog
(Tverskyα=0.05 similarity= 0.97, pxC50=7.65) with unknown
directionality. Alpha-carboxyethyl hydroxychroman (alpha-
CEHC) was also connected to LMNA but also to the thyroid
hormone receptor beta (THRB). However, since the modulatory
action of the analog compound is unknown and alpha-CEHC is
depleted in UC but enriched in CD, we were unable to infer
directionality of the interaction. Oleanolic acid was connected
through other plant terpenoids (urolic and moronic acid) and
bacterial-specific sphingolipids (i.e., CHEMBL1334750) to several
targets of interest for pharmaceutical purposes such as GPBAR1
(G Protein-Coupled Bile Acid Receptor 1) and PTPN7 (Protein
tyrosine phosphatase non-receptor type 7).

Connecting gene expression and metabolite abundance. We
then considered differential expressed genes (DEGs) comparing
non-IBD against CD and UC states respectively, accounting for
the heavy impact of the biopsy location variable (Fig. 3a). A total
of 2170 DEGs occurred overall, of which 820 DEGs were shared
by both CD and UC (Fig. 3b). Pathway enrichment analysis
determined a high representation of immune inflammation-
related pathways (i.e., Cytokine Signaling, NRF2 non−canonical
NF− kB pathway, Interleukin 3, 14 and 17 signaling) (Supple-
mentary Fig. 4; Supplementary Data 3).

Starting from DEGs, we proceeded to parse connections with
differentially abundant metabolites using the ChEMBL database, by
inverting the workflow described above. After parsing all possible
modulators among for DEGs, top-ranking metabolites were
considered modulators if having any similar analog with functional
activity against the candidate gene represented by the transcript,
resulting in a total of 45 prospectively druggable targets.

Several metabolites underrepresented in IBD were classified as
tentative negative modulators of upregulated targets. For example,
receptors of the CXC ligand 8 (CXCL8 or IL8) chemokine family,
CXCR1 and CXCR2, were overexpressed while their known
negative modulator compounds, ibuprofen (pxC50= 7.0) and its
HMP-2 derivative, 2-hydroxibuprofen, (Supplementary Data 3),
were under-represented in IBD patients although below the
consensus scoring threshold (Supplementary Data 1).

Another example is HCAR2 (GPR109a) which was upregulated
in CD and UC patient biopsies (log2fc= 6.15 [CD] and 4.51
[UC]) while its competing modulators, nicotinic acid and
trigonelline were depleted and enriched, respectively, in IBD
patients’ stool (Fig. 3c; Supplementary Data 2).
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Metabolite Co-directionality with Target Gene Expression
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§ Reversing transcriptomic disease signature using candidate modulators
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Linkages to Disease Genetics
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§ Metabolites passing thresholds and tractable targets with genetic evidence

§ Retrieved 808 genes with genetic associations to IBD

§ Identified 464 potential pairings between genetic targets with metabolite 
modulators, 13 with known modulation mechanisms

GABRG2

NOS2

Nuzzo…Brown. 2021. Commun. Biol. (Nature). 4:288

GABA receptor gamma2



in vitro Validation Assays for Selected Metabolites
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§ Selected 11 metabolites for 
profiling in human primary cell-
based phenotypic assays 
(BioMAP® Diversity PLUS panel)

§ 8 metabolites showed 
significant modulation of 
immune biomarkers in one or 
more cellular systems.

§ Summary
§ 135 metabolites 

provisionally connected to 
80 different targets in IBD

§ 983 potential metabolite-
target interactions 
identified

§ Immuno-modulating 
metabolites and targets are 
potential starting points for 
drug discovery

§ Oleanolic acid (OA) showed activity in T-cell dependent B-cell activation (BT), 
coronary artery smooth muscle (CASM3C), fibroblasts (HDF3CGF) assays

§ OA is a connected ligand of GABRG2, PTPN7 and GPBAR1

Nuzzo…Brown. 2021. Commun. Biol. (Nature). 4:288

“negative modulation” (including inhibitors, antagonists, etc.) or
“other” for all uncharacterized or unclear interactions. Additionally,
we used a target classification based on mechanism of action for
drug and treatment37 and found that the most connected proteins

were well-known drug targets such as GPCRs, transcriptional fac-
tors and various enzymes.

Several host–metabolite pairings emerge from our analyses
which have yet to be explored for drug purposes to the best of our

Fig. 5 Examples of biomarker readouts from in vitro cell assays for four of eleven tested metabolites. a Butyrate, b Nicotinic acid, c Alpha-CEHC and d
Oleanolic acid. Metabolites were administered at different concentrations, here ranked from higher to lower (concentrations in Supplementary Data 8).
Readouts graph show the differential abundance vs baseline for the B and T cell system (BT), arterial smooth muscle cells (CASM3C) and wound healing
(HDF3CGF) (full results for all 11 metabolites are shown in Supplementary Fig. 6). Knowledge-based graphs on the right represent possible pathway
connections between the proposed targets for each metabolite and the most significant biomarker readouts. Interactions are color-coded for positive
(green), negative (red) and unknown (gray) modulation.
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Summary and Future Directions
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§ Multi-omics analyses of human-microbe interactions can assist in drug discovery:
§ New targets
§ Mechanism of action
§ Biomarkers
§ Drug repositioning
§ Precision medicine – Identify potential disease subtypes in patient populations
§ Find common targets and pathways across diverse disease etiologies

§ Future areas
§ New frontier for AI enabled target discovery:

§ Growing number of Large language models (LLMs) trained on diverse chemical (compounds), biological (DNA, mRNA 
and proteins) and clinical datasets.

§ Understanding “feature” selection and the underlying drivers of AI model predictions are important for confidence-
building as well as furthering biomedical insights and innovation.

§ Need to benchmark AI predictions with standardized multi-omics analytical approaches as well as biological results.

§ For any computational method, it is essential to have experimental and clinical validation.
§ Use biological relevant datasets to improve future algorithms and pipelines.
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